Subfield permutation polynomials and orthogonal subfield systems in finite fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complementary Dual Subfield Linear Codes Over Finite Fields

Two families of complementary codes over finite fields q are studied, where 2 = q r is square: i) Hermitian complementary dual linear codes, and ii) trace Hermitian complementary dual subfield linear codes. Necessary and sufficient conditions for a linear code (resp., a subfield linear code) to be Hermitian complementary dual (resp., trace Hermitian complementary dual) are determined. Construct...

متن کامل

Some New Permutation Polynomials over Finite Fields

In this paper, we construct a new class of complete permutation monomials and several classes of permutation polynomials. Further, by giving another characterization of opolynomials, we obtain a class of permutation polynomials of the form G(x) + γTr(H(x)), where G(X) is neither a permutation nor a linearized polynomial. This is an answer to the open problem 1 of Charpin and Kyureghyan in [P. C...

متن کامل

Specific permutation polynomials over finite fields

We present new classes of permutation polynomials over finite fields. If q is the order of a finite field, some polynomials are of form xrf(x(q−1)/d), where d|(q − 1). Other permutation polynomials are related with the trace function. 2000 Mathematics Subject Classification: Primary 11T06.

متن کامل

On some permutation polynomials over finite fields

Let Fq be a finite field of q = pm elements with characteristic p. A polynomial P(x) ∈ Fq[x] is called a permutation polynomial of Fq if P(x) induces a bijective map from Fq to itself. In general, finding classes of permutation polynomials of Fq is a difficult problem (see [3, Chapter 7] for a survey of some known classes). An important class of permutation polynomials consists of permutation p...

متن کامل

Power integral bases in sextic fields with a cubic subfield

In the present paper we give an algorithm to compute generators of power integral bases having ”small” coordinates in an integral basis in sextic fields containing a cubic subfield. As an application of the method, we give a sufficient condition for infinite parametric families of number fields of this type to have power integral basis. To illustrate the statement we construct parametric famili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1990

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-54-4-307-315